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Abstract Coldwater disease (CWD) is a bacterial disease that affects a broad host-species range of

fishes that inhabit cold, fresh waters. This disease occurs predominately at water temperatures of

16 �C and below, and is most prevalent and severe at 10 �C and below. Coldwater disease occurs

in cultured and free-ranging populations, with hatchery-reared young trout and salmon species espe-

cially vulnerable to infections. Flavobacterium psychrophilum is the etiological agent of CWD. This

Gram-negative bacterium may be recovered from affected host tissues and characterized using stan-

dard biochemical techniques, providing that reduced nutrient media are used. There are numerous

reports that describe sensitive and specific serologic and genomic diagnostic techniques for CWD.

The entire genome of a virulent isolate of F. psychrophilum has been sequenced and described. Rain-

bow trout (Oncorhynchus mykiss) fry syndrome is also caused by F. psychrophilum with mortalities

>50% possible among affected fish lots. Evidence suggests that pathogen transmission occurs both

horizontally and vertically. Analogous to many diseases to other animals, prevention and control are

essential to avoid losses to CWD, particularly since there is currently no commercially available vac-

cine and a limited number of antimicrobials have been approved for treating food fish worldwide.

This review provides current host and geographic ranges of the pathogen, and covers epizootiology,

transmission, pathogenicity, diagnostics, and prevention and treatment.
ª 2010 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
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Flavobacterial diseases of freshwater fishes

There are three Flavobacterium spp. that are primary patho-

gens to freshwater hatchery-reared and wild fish populations:
Flavobacterium columnare, the cause of columnaris disease,
Flavobacterium branchiophilum, the cause of bacterial gill dis-

ease, and Flavobacterium psychrophilum the cause of bacterial
coldwater disease. Combined, the diseases and mortality
caused by these pathogens constitutes one of the broadest

host- and geographic ranges of any of the bacterial pathogens
to fishes. Fish pathogenic Flavobacterium spp. are presumed
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ubiquitous in temperate freshwater aquatic environments and

occur in water temperatures ranging from just above freezing
(F. psychrophilum) to 30 �C and above (F. columnare). Most,
if not all cultured freshwater fish species may be affected by
at least one of these pathogens. Other members of the Family

Flavobacteriacea have been associated with diseases of fishes.
For example, Chryseobacterium piscicola is an emerging path-
ogen of Flavobacteriaceae having been reported from Atlantic

salmon (Salmo salar) and rainbow trout (Oncorhynchus my-
kiss) [1,2].

Columnaris disease, affects many cool- and warmwater fish

species, typically in warm waters at 20–25 �C and above; how-
ever, it is not unusual to diagnose columnaris disease in fish,
including trout species, in water as cool as 12–14 �C. Many cul-

tured and free-ranging fish species are considered at risk for
infection and possible disease. Columnaris disease affects aqua-
culture species, particularly the catfish species, as well as many
aquarium species. F. columnare can be cultured from external

sites on fish, including lesions, skin/mucus, and gills, and inter-
nal tissues, primarily the kidneys of fishwith systemic infections.
Primary cultures can bemade onAnacker andOrdal [3] Cytoph-

aga agar or the selective medium of Hawke and Thune [4]. The
resulting colonies on primary plates are very characteristic: pale
yellow, rhizoid and adhere tightly (i.e., sticky) to the medium

surface. Colonies may be subcultured and confirmed using a
few relatively simple diagnostic tests [5].

Bacterial gill disease, caused by F. branchiophilum [6–8], is
primarily a disease to young hatchery-reared salmonids; it is

not recognized as a problem in wild fish populations [9–13].
In endemic areas, bacterial gill disease outbreaks in aquacul-
ture occur regularly and often in conjunction with increased

host stressors. Although bacterial gill disease has been experi-
mentally induced in healthy fish of various ages [14], many
workers have noted that this disease typically occurs in associ-

ation with certain predisposing factors such as overcrowding,
reduced dissolved oxygen, increased ammonia, and particulate
matter in the water [9,10,13]. Consequently, alleviating these

host stressors has often been shown to reduce severity of active
outbreaks and prevent further outbreaks. Mortality can rise
quickly and be high if the culture conditions are not improved
or a treatment is not promptly administered. Bacterial gill

disease is common in spring, which coincides with production
cycles at fish hatcheries when they have their greatest numbers
of small fish after spawning and prior to stocking. A diagnosis

of bacterial gill disease can often be accurately made by expe-
rienced workers simply by knowing the previous bacterial gill
disease history of the hatchery and observing characteristic

signs displayed by affected fish. Infected fish are typically
lethargic, will be high in the water column and gasping for
air at the surface and align near and into the incoming water,

all of which are obvious signs of respiration difficulty. A
Gram-stained gill smear will show numerous Gram-negative,
long-thin rods. Combined, these criteria generally constitute
a confirmed diagnosis. Bacterial primary isolation of

F. branchiophilum is typically not attempted because this
bacterium is particularly difficult to culture.
Bacterial coldwater disease

The etiological agent of bacterial coldwater disease (CWD) is

F. psychrophilum, formerly known as Cytophaga psychrophila
and Flexibacter psychrophilus [15]. This bacterial pathogen

has been recovered from a broad geographic range and from
a number of free-ranging and cultured salmonid fish species
and a variety of non-salmonid fish hosts (Table 1). Coldwater
disease results in significant disease and mortality to coldwater

fish species, particularly to certain trout and salmon popula-
tions. Disease typically occurs at water temperatures below
16 �C, and is most prevalent and serious at 10 �C and below

[16]. Although all ages of fish are affected, small fish (fry and
fingerling size) are particularly vulnerable to infections
[16,17]. Coldwater disease presents as different manifestations

with the ‘classic’ or most prevalent form of disease producing
characteristic open lesions on the external body surfaces of
fish. These lesions may be initially observed as areas of

rough-appearing skin or fin tip fraying. As the infection con-
tinues, necrosis develops at the sites of bacterial colonization,
often noted as dorsal and adipose fin pathology. Lesion devel-
opment has a predilection for the caudal peduncle and caudal

fin regions. Along with the external pathology, systemic bacte-
rial infections and extensive internal pathology will also be
present among many specimens. As the disease form is more

acute, the external lesions will be less prevalent and systemic
infections and internal pathology will predominate.

F. psychrophilum was initially described and recovered in

1948 from a die-off in coho salmon Oncorhynchus kisutch from
the Pacific Northwest United States [18]. This disease affected
the adipose-caudal fin region and in some specimens with late-
stage infections and prior to death, the vertebral column could

be fully exposed. While usually fatal to fish with late-stage
disease signs, the prevalence and mortality in affected fish pop-
ulations were low. Davis [19] observed slender, Gram-negative

rods 3–5 lm long and noted that overcrowding seemed to be a
host predisposing factor in ‘peduncle disease’ outbreaks in
rainbow trout in 1941 and 1945 at a hatchery in the Eastern

United States (West Virginia). To control peduncle disease,
Davis [19] suggested culling out those fish with obvious clinical
signs in an effort to minimize the continuous shedding of path-

ogenic cells into the water column that served to infect other
fish. It was also suggested to properly sterilize contaminated
rearing troughs or ponds and all equipment, such as boots
and nets, which were used to handle infected fish or water.

The pathologies and clinical disease signs associated with
CWD are varied and extensive [20–24]. Listlessness, loss of
appetite, and eroded fin tips are initial signs of CWD. Bacterial

colonization may appear as faint, white areas on the fins, with
some fish showing separation of the fin rays. Other disease
signs may include exophthalmia, abdominal distension with in-

creased volumes of ascites, and pale gills. In advanced cases of
coldwater disease, necrosis of the caudal region may be severe
and progress until caudle vertebra are exposed (Fig. 1).

Lesions can also be noted on the lateral sides, snout-jaw re-
gion, and musculature often between the dorsal fin and back
of the head. Histological examinations show extensive pathol-
ogy in host tissues, including: focal necrosis in spleen, liver,

and kidneys; increased vacuolar degeneration; increased eosin-
ophilia and haemosiderin in the kidney; necrosis, pyknosis and
lymphocyte infiltration in the dermis and underlying lateral

musculature of skin lesions.
Rainbow trout fry syndrome [25–30] and a relatively more

chronic form [31,32] are other disease manifestations caused by

F. psychrophilum. Rainbow trout fry syndrome, as the name
implies, affects the early life-stage fish, or the sac fry to



Table 1 Host and geographic records of Flavobacterium psychrophilum.

Geographic origin Hosts References

Australia Rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar [59,69]

Canada Rainbow trout, brook trout Salvelinus fontinalis, Atlantic salmon,

Arctic char Salvelinus alpinus, coho salmon O. kisutch, sea lamprey

Petromyzon marinus L.

[71,84,113–115]

Chile Rainbow trout, Atlantic salmon [94,106,116,117]

Denmark Rainbow trout [27,38,40]

Estonia Grayling Thymallus thymallus [118]

Finland Rainbow trout, brown trout S. trutta morpha lacustris, sea trout S.

trutta morpha trutta, brook trout, Arctic char, whitefish Coregonus

muksun, perch Perca fluviatilis L., roach Rutilus rutilus

[28,38,73,86,118,119]

France Rainbow trout, common carp Cyprinus carpio, eel Anguilla anguilla [25,28,45,57]

Germany Rainbow trout, eel A. anguilla, common carp, crucian carp

Carassius carassius, tench Tinca tinca

[120,121]

Japan Rainbow trout, coho salmon, chum salmon O. keta, amago salmon

O. rhodurus, common carp, yamame salmon O. masou, iwana

salmon S. leucomaenis pluvius, eel A. japonica, Japanese dace (ugui)

Tribolodon hakonensis, ayu Plecoglossus altivelis, pale chub (oikawa

minnow) Zacco platypus, Japanese crucian carp (ginbuna) C.

auratus langsdorfii, and two species of goby Chaenogobius urotaenia

and Rhinogobius brunneus

[48,77,85,122,123]

Korea Ayu [124]

Northern Ireland Rainbow trout [28]

Norway Brown trout S. trutta morpha lacustris [28]

Peru Rainbow trout [71]

Scotland Rainbow trout [125]

Spain Rainbow trout, eel A. anguilla [30,126]

Sweden Rainbow trout, sea trout, Baltic (Atlantic) salmon S. salar [52,118]

Switzerland Rainbow trout [28]

Turkey Rainbow trout [127]

United Kingdom Rainbow trout, Atlantic salmon [26,29,59,116]

United States Rainbow trout, brook trout, brown trout S. trutta morpha

lacustris, lake trout S. namaycush, steelhead trout O. mykiss

(migrating), Atlantic salmon, coho salmon, Chinook salmon O.

tshawytscha, white sturgeon Acipenser transmontanus, chum

salmon, goldfish Carassius auratus, cutthroat trout O. clarkii

[16,18,19,32,51,58,71,109,128,129]
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early-feeding developmental stage. This disease form is acute

and may result in high percentages of deaths among fish lots,
perhaps 50% or greater total mortality. A bacteremia develops
in conjunction with extensive internal pathology, including

anemic and pale kidneys and livers. Lethargy, exophthalmia
(often bilateral), dark skin pigmentation and pale gills are
additional characteristic disease signs of rainbow trout fry syn-

drome. Lorenzen et al. [28] showed that F. psychrophilum iso-
lates recovered from fish with rainbow trout fry syndrome
were phenotypically homogeneous with isolates recovered
from larger fish with classical CWD. Daskalov et al. [33] noted

that the effects of high oxidized lipids in fish showed similari-
ties in signs of rainbow trout fry syndrome. Some of the same
histologic characteristics of rainbow trout fry syndrome were

also noted in nutritional diseases caused by feeding diets high
oxidized lipids [33]. Rainbow trout fed a diet with high levels
of oxidized lipids had a greater mortality, relative to controls,

by F. psychrophilum after exposure to the pathogen by scarify-
ing and immersion or IP challenges.

With the chronic form of CWD, affected fish may show

spiral or erratic swimming behavior, blackened caudal (tail) re-
gions and/or spinal column deformities [31,32]. The reported
disease signs and behavior appeared similar to those associated
with whirling disease in fish caused by Myxobolus cerebralis
[31]. However, with subsequent diagnostic evaluation, a whirl-

ing disease etiology can be eliminated and a correct diagnosis
of CWD can be made based upon a case history along with
primary culture and characterization of F. psychrophilum from

affected tissues, including brain, spleen, kidney, liver, and le-
sion-skin. Kent et al. [32] showed the ataxic, spiral swimming
behavior was associated with F. psychrophilum infections and

chronic inflammation of the cranium and vertebrae in coho
salmon. Fish showing this behavior did not recover and died.
Based on epizootiological analyses, Kent et al. [32] concluded
that F. psychrophilum was the cause of this disease presentation

because it was only observed in populations that had recovered
from acute CWD. Histologic evaluations showed periostitis,
osteitis, meningitis, and periosteal proliferation of vertebrae

at the junction of the vertebral column and cranium. This
chronic CWD manifestation has occurred in fish that have
recovered from a previous outbreak of acute clinical CWD

[32] or it was diagnosed in fish lots with no recent history of
CWD [31]. The bacterium may be cultured from the brain, kid-
ney, liver, spleen and heart, but not necessarily from all tissues

from each specimen or from all apparently infected specimens
[31,32].

Concurrent infections in fish of F. psychrophilum with other
fish pathogens are not uncommon. Dalsgaard and Madsen [34]



Fig. 1 Typical coldwater disease caudal lesions in rainbow trout

Oncorhynchus mykiss (Panel A) and coho salmon O. kisutch (Panel

B) caused by Flavobacterium psychrophilum. Photographs courtesy

of Vermont Fish and Wildlife Department, Waterbury, VT and

Wisconsin Department of Natural Resources, Madison, WI.
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reported a concurrent infection in rainbow trout with the
Gram-negative bacterium Yersinia ruckeri, the causative agent
of enteric redmouth disease. There are other co-infections of

F. psychrophilum with viruses, namely, infectious pancreatic
necrosis virus, infectious hematopoietic necrosis virus, and
erythrocytic inclusion body syndrome [35–37]. F. psychrophi-

lum does not cause diseases in other animals or humans. The
impact of fish losses at hatcheries reduces the numbers of fish
available for raising or for stocking for sport fishing purposes
and can impact restoration or population augmentation

successes of certain endangered fish species.

Epizootiology and transmission

Since F. psychrophilum is horizontally transmitted, the water
column is the medium in which viable cells move. The

reservoir(s) of F. psychrophilum include pathogen-carrier fish,
bacteria-shedding diseased and dead fish, and water supplies.
F. psychrophilum has a demonstrated ability to survive for long

periods outside fish hosts and to occur in non-fish hosts.
Madetoja et al. [38] showed that rainbow trout that died from
an infection with F. psychrophilum shed very high numbers of

bacteria. Cell shedding rates depended on water temperatures,
and cells were shed for at least 80 days. Madsen et al. [39]
isolated F. psychrophilum from water samples that were
collected near farmed rainbow trout or eggs. The results from
laboratory waterborne challenges, the equivalent to natural

horizontal transmission, with F. psychrophilum are equivocal
[16,40] and an abrasion artificially created on the body surface,
such as with a pre-challenge bath exposure to 0.005% forma-
lin, facilitates disease [40]. Aoki et al. [41] noted success in

F. psychrophilum laboratory challenges in 1.3 or 5.6 g rainbow
trout depended on the growth stage of the bacterial challenge
culture used to expose the fish. It was important to use

log-phase cultures for experimental bath infections to produce
typical clinical disease signs and mortality. Aoki et al. [41]
showed that 18 and 24 h F. psychrophilum cultures with chal-

lenge doses of 2.00 · 107 and 8.50 · 107 cfu/mL, respectively,
resulted in significantly greater mortalities than was obtained
with a 48 h culture, even though the 48 h culture had a greater

number of cells (3.40 · 108 cfu/mL).
Injection challenge methods are often used to expose exper-

imental groups of fish to F. psychrophilum [36,42–44]. Decoste-
re et al. [42] noted that only 10-week old rainbow trout

developed clinical signs and mortality following IP injections
with 1.00 · 106 cfu, while fish 5 or 15 months old did not. Also,
spleen phagocytes from the 10-week old fish contained viable

F. psychrophilum cells, and these cell numbers increased with
exposure time. This contrasted with the two groups of older
fish in which no F. psychrophilum cells were detected in spleen

phagocytes.
F. psychrophilum has a demonstrated ability to adapt to a

variety of environments, and not only survive, but also main-
tain pathogenicity. This bacterium has been recovered from

broad host and geographic ranges, it resists lysozyme up to
2 mg/mL, and a small percentage of cells survived 100 ppm
povidone–iodine for 30 min, a compound frequently used as

an egg surface disinfectant. F. psychrophilum can survive in
stream water for months and adopts a different morphology
apparently to withstand the conditions of starvation [45].

Madetoja et al. [46] showed that F. psychrophilum cells in
freshwater at 15 �C remained culturable through 300 days.
Attachment to n-hexadecane and unfertilized eggs was signifi-

cantly greater by F. psychrophilum cells maintained in either
stream water or cytophaga broth for 1 month, in contrast to
cells from 3-day-old cultures in cytophaga broth [45]. Adapt-
ability of F. psychrophilum was further demonstrated by

Brown et al. [17] when they recovered the bacterium from
the brain of a newt Pleurodelinae, a non-fish host. Addition-
ally, using PCR F. psychrophilum was detected from benthic

diatoms [47] and from algae [48]. These studies suggest that
perhaps any number of non-fish hosts could serve as a reser-
voir for F. psychrophilum. Although the contribution of aqua-

tic non-fish hosts to the biology of CWD is not known, the
capability of F. psychrophilum to survive in aquatic environ-
ments is illustrated.

Evidence suggests that F. psychrophilum is also vertically
transmitted. For example, this bacterium has been recovered
from ovarian fluids, intraovum, egg surfaces, milt, mucus
samples and kidneys from sexually mature chum, coho and

Chinook salmon, rainbow and steelhead trout, and Atlantic
salmon [16,17,39,49–51]. Brown et al. [17] recovered F. psy-
chrophilum from the insides of fertilized and eyed eggs. Ekman

et al. [52] isolated F. psychrophilum from both male and female
reproductive products from Baltic salmon (S. salar) returning
from the Baltic Sea to spawn. Similar to other fish pathogens,

F. psychrophilum can also contaminate the surface of patho-
gen-free fish eggs, which is a form of horizontal transmission
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[17,53–55]. Kumagai et al. [54] exposed F. psychrophilum to

groups of eggs before and after water hardening, as well as
to eyed eggs. All of the groups were then disinfected with
50 mg/L povidone-iodine for 15 min. F. psychrophilum was
subsequently recovered from only those eggs that were exposed

to the pathogen prior to water hardening. Cipriano [49] recov-
ered between 5.00 · 102 and 2.50 · 108 cfu F. psychrophilum
per gram from Atlantic salmon eggs that were treated with

50–100 mg/L povidone–iodine at fertilization, post-water
hardened and eyed egg stages. Further evidence that F. psy-
chrophilum is internalized within eggs was reported by Kuma-

gai et al. [53] who demonstrated that disinfection with 50 mg/L
povidone-iodine for 15 min was not effective in eliminating the
bacterium from either eyed- or fertilized eggs that had been

pathogen-exposed prior to the water hardening process.
Kumagai et al. [54] showed the importance of water hardening
the eggs in pathogen-free water to prevent (egg) surface
contamination.

Diagnosis and isolate characterization

A successful diagnosis of CWD considers all relevant informa-
tion. Important factors include facility disease history, the
rearing conditions for the fish, water temperature, host(s) in-

volved and their ages, presence of characteristic clinical disease
signs, the observation of characteristic bacterial cells in Gram-
stained tissue preparations, and confirmation of F. psychrophi-

lum as the causative agent from moribund or freshly dead spec-
imens through primary culture and biochemical identifications,
serological, or genotypic assays.

Microscopic examination of F. psychrophilum cells in in-

fected tissues reveals long, thin, rod-shaped cells typically in
a size range of 0.75–1.0 lm wide by 3–5 lm long (Fig. 2). Some
cells may be attached end-to-end and consequently will appear

longer.
F. psychrophilum can be recovered from a number of exter-

nal and internal sites including skin/mucus, gills, brain, ascites,
Fig. 2 Simple stain (crystal violet; 1000·) of Flavobacterium

psychrophilum cells. External lesion material smear from a

rainbow trout Oncorhynchus mykiss affected with coldwater

disease. Photomicrograph courtesy of Vermont Fish and Wildlife

Department, Waterbury, VT.
lesions, mucus, kidney and spleen and reproductive products

of spawning adults. However, not all apparently affected fish
could have sufficient number of viable cells in internal tissues
for successful primary culture. Recovery of the pathogen from
lesions is often more challenging than from internal sample

sites due to the presence of environmental bacteria or oomyce-
tes that will readily grow on primary isolation bacteriological
media. Taking cultures from a greater number of fish or sam-

ples will enhance the chance to recover the bacterium. With
some diagnostic cases, it may be possible to observe character-
istic F. psychrophilum cells from infected tissues on histologic

slides, yet be unsuccessful in culturing the bacterium from
those same tissues, or vice versa, particularly from asymptom-
atic fish having reduced infection levels. The pathology to fish

caused by F. psychrophilum can be extensive, for example,
focal necrosis in various organs, and periostitis, osteitis, men-
ingitis, ganglioneuritis and pyknotic nuclei are possible [26,32].
Particularly with chronic coldwater disease, masses of

F. psychrophilum may be seen in the cranial area and anterior
vertebra as well as inflammation and cartilage necrosis along
the vertebral column.

Homogenization of sample tissues prior to the inoculations
may enhance recovery, especially from fish with low-level
infections. Primary culture plates can be inoculated using

one of several techniques, such as direct streak-plating or
preparing a dilution series and drop-inoculating specific
volumes on the medium surface to yield viable cell numbers
(i.e., cfu/g). Several bacteriological media may be used for

primary culture of F. psychrophilum. Cytophaga medium [3]
is frequently employed in diagnostic laboratories; the recipe
consists of 0.05% tryptone, 0.05% yeast extract, 0.02%

sodium acetate, 0.02% beef extract, and pH 7.0–7.2. Agar
may be added if desired. Cytophaga medium was developed
to support the growth of bacteria that require a reduced nutri-

ent load requirement. Holt et al. [21] described tryptone yeast
extract salts (TYES) consisting of 0.4% tryptone, 0.04% yeast
extract, 0.05% magnesium sulfate, 0.05% calcium chloride,

and pH 7.2 as an excellent liquid medium, that diagnosticians
routinely supplement with agar for use as a primary isolation
medium for F. psychrophilum. Other reduced nutrient concen-
tration media have also been used [16,56–59]. Some authors re-

port improved growth of F. psychrophilum after supplementing
the medium with serum, a component typically used for slow
growing or fastidious bacteria that will grow on rich nutrient

media. Lorenzen [60] and Brown et al. [17], for example,
incorporated 5.0% and 0.5%, respectively, of new born calf
serum. Obach and Baudin Laurencin [61] supplemented

Cytophaga medium with 10% fetal calf serum for recovery
of F. psychrophilum from rainbow trout. Daskalov et al. [62]
utilized Cytophaga medium as a basal medium to which they

added galactose, glucose, rhamnose and skimmed milk.
Rangdale et al. [59] modified cytophaga medium by increasing
the tryptone concentration ten-fold (to 0.5%) and the beef
extract from 0.02% to 0.05%. Increased tryptone (to 0.5%)

in Cytophaga medium has since been used by various research-
ers who reported excellent growth of laboratory cultures.
Lorenzen [60] showed the importance of the brand of beef

extract to culture F. psychrophilum, with optimal results using
the semi-solid form. Kumagai et al. [63] suggested the incorpo-
ration of 5 lg/mL tobramycin to primary culture media to aid

recovery of F. psychrophilum by retarding the growth of
environmental bacterial contaminants.
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The optimum incubation temperature for primary isolation

and culture growth of F. psychrophilum is 15–16 �C. Colonies
on Cytophaga agar are pale-yellow and about 2–3 mm in
diameter after 2–3 days of incubation. Colonies form a charac-
teristic fried egg appearance with a slightly raised center and

mild spreading, irregular margin (Fig. 3). Colonies do not
adhere to the medium surface in the similar manner that
F. columnare colonies do. Suspect F. psychrophilum colonies

can readily be subcultured onto fresh media, e.g., Cytophaga
agar, for characterization and identification using standard
biochemical and physiological methods [9,15,28,57–58,64–

69]. Unless growth/no growth on select media is to be evalu-
ated, the basal medium for biochemical testing must be
reduced nutrient to support bacterial growth, even for negative

test reactions. For example, the basal medium of Pacha [70],
which consists of 0.2% peptone, 0.2% sodium chloride,
0.03% potassium phosphate, 0.00015% bromothymol blue,
and 0.3% agar, pH 7.0–7.2, is an excellent choice as a basal

medium to evaluate acid production from assimilation of
sugars.

Isolates typically do not grow, or grow poorly on high-

nutrient concentration media routinely used in fish disease
diagnostic laboratories, including brain heart infusion agar,
tryptic soy agar, triple sugar iron agar and blood agar. Most

F. psychrophilum isolates are reported to produce oxidase
and catalase, hydrolyze gelatin and casein, produce flexiru-
bin-like pigments (chromogenic shift from yellow to orange
in 10% KOH), degrade tyrosine, and lyse killed Escherichia

coli cells. Most isolates are negative for assimilation of a suite
of sugars (production of acid indicated by a pH drop in a basal
medium with a pH indicator), indole production, starch hydro-

lysis, and degradation of tributyrin and xanthine. Variable
results are reported for elastin hydrolysis, nitrate reduction,
and chondroitin sulfate AC lyase. Some of the variability

reported in line-data for certain biochemical tests might be
attributed to differences in isolate origins or the methods
Fig. 3 Flavobacterium psychrophilum colonies on Cytophaga

agar [3] supplemented with 0.2% gelatin. The bacterial colonies

were gelatinase positive, as indicated by clear zones adjacent to

and surrounding the colonies.
employed to determine the results. An example of this is the

unique phenotype of some F. psychrophilum isolates from
Australia, which produce brown pigment when grown on a
medium containing tyrosine [69]. Lorenzen et al. [28] showed
that the concentration of certain medium supplements, or

biochemical test substrates, may affect the test results. If the
concentration of a substrate in a medium is too low, this could
result in a false-negative interpretation. Furthermore, they

emphasized the need to use fresh growth cultures as the
inoculum for biochemical characterization tests, and the use
of sensitive test procedures for certain characters, such as the

use of lead acetate to detect weak production of hydrogen
sulfide.

Other sensitive diagnostic techniques in addition to bacte-

rial culture have been employed to detect F. psychrophilum in
water, in fish, and fish sex products, or to diagnose or confirm
standard culture diagnostics for coldwater disease. A number
of clinicians have used antisera raised against F. psychrophilum

in the immunofluorescence antibody technique [41,48,71–74]
and for immunohistochemistry [35,38,75]. Enzyme-linked
immunosorbent assays have been developed using antibodies

F. psychrophilum cell surface components for detection of the
pathogen in fish [71,76]. Misaka et al. [77] used nitrocellulose
bacterial colony blotting off culture media plates and immuno-

staining to quantify viable F. psychrophilum from kidneys and
ovarian fluids of chum salmon Oncorhynchus keta.

Fish disease diagnosticians are increasingly employing and
relying on nucleic acid genotype based assays to detect fish

pathogens, including F. psychrophilum, or to confirm the
identifications made using other methods, such as standard
phenotypic characterizations. A number of procedures using

polymerase chain reaction assays (PCR), and particularly the
more specific nested PCR assays, have been described
[47,51,72–74,78–89]. Amita et al. [48] detected F. psychrophi-

lum in a water sample and in algae using PCR. Izumi et al.
[47] used a nested PCR to detect F. psychrophilum from benthic
diatoms samples from surfaces of stones. Suzuki et al. [90]

compared the sensitivities of various PCR primers for
F. psychrophilum and found that the primer targeting the 16S
rDNA was the more sensitive; however, this primer resulted
in a level of false-positive reactions. Because of this, they

concluded that PCR primers targeting the DNA gyrase
subunit gene gyrB and the peptidyl-prolyl cis–trans isomerase
C gene ppiC were the preferred primers for F. psychrophilum.

A multiplex PCR was developed by del Cerro et al. [82] to
detect three fish pathogens simultaneously, which included
F. psychrophilum.
Pathogenicity and immunity

The genome of a virulent F. psychrophilum isolate has been
delineated [91]. The circular chromosome consists of
2,861,988 base pairs, which is relatively small compared to

other environmental bacteria within the family; the average
genome size for the genus Flavobacterium, estimated by
DNA reassociation assays, is 4.1 ± 1 Mb [92]. The G + C
content of F. psychrophilum is 32.54% [64].

Potential gene products related to virulence for F. psychro-
philum were described [91]. Proteases are considered to be
essential virulence components, and potential secreted

proteases were identified in the genome [93]. Genes coding
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for cytolysins and haemolysin-like proteins are considered

important virulence determinants, while fibronectin-type adhe-
sins may have an essential role in the bacterium’s attachment
capability. Other enzymes act to negate host defense mecha-
nisms. Avendaño-Herrera et al. [94] employed pulsed-field

gel electrophoresis of Sac I restriction patterns of Chilean F.
psychrophilum field isolates and demonstrated two distinct ge-
netic groups that correlated with host of origin, rainbow trout

and Atlantic salmon.
Innate immunity to F. psychrophilum in rainbow trout has

been correlated with spleen size [95]. Hadidi et al. [95] screened

71 full-sibling crosses and found that the resistant or suscepti-
ble phenotypes were stable. The spleen-somatic indices of 103
fish created high, medium, and low spleen-index groups. Spec-

imens having the larger spleen indices were significantly more
resistant to F. psychrophilum. Acute serum amyloid A (A-
SAA) is normally thought to be a major acute-phase reactant
and effector of innate immunity in vertebrates. When chal-

lenged with whole cell F. psychrophilum, lipopolysaccharides
(LPS), or CpG oligonucleotides, A-SAA was strongly induced
in many immune-relevant rainbow trout tissues [96]. Unlike

mammalian A-SAA, trout A-SAA does not increase in the
plasma of diseased fish. Therefore, the role of this molecule
in protection against F. psychrophilum is perhaps more impor-

tant in localized defense mechanisms.
Numerous studies have been done that demonstrate pro-

tective immune responses in an effort to develop a vaccine
for CWD. Passive immune protection to F. psychrophilum

with serum from convalescent, and previously immunized
rainbow trout was demonstrated (in rainbow trout) by LaF-
rentz et al. [97]. Protection to specific molecular mass F. psy-

chrophilum cell fractions was shown by LaFrentz et al. [36],
also to the P18 surface antigen [98], and to formalin- and
heat-inactivated F. psychrophilum cells [99]. Additionally,

protection against F. psychrophilum was shown by vaccina-
tion with an outer membrane fraction [100] and a 70–
100 kD cell fraction [36] composed of O-polysaccharide com-

ponents of LPS. Aoki et al. [101] showed that membrane
vesicles were released in F. psychrophilum stationary phase
growth cultures. Stationary phase F. psychrophilum cells or
membrane vesicles alone provided no protection to rainbow

trout; however, host survival to challenge was 94–100%
when these two components were combined in experimental
vaccines. Analysis of virulent and avirulent strains of F. psy-

chrophilum by comparative immunoproteomic methods dem-
onstrated eight proteins that were unique to the virulent
strain [102]. Two highly immunogenic heat shock proteins

(HSP 60, HSP 70) shared extensive homology with the heat
shock proteins of other, related bacteria. LaFrentz et al.
[103] developed an attenuated strain of F. psychrophilum

through repeated passage on increasing concentrations of rif-
ampicin. Intraperitoneal injection with the attenuated strain
conferred significant protection in rainbow trout to challenge
with the virulent parent strain. The protected fish showed

elevated specific antibody titers. More importantly, LaFrentz
et al. [103] showed that immersion exposure to the attenu-
ated strain also elicited a protective immune response in fish.

Álvarez et al. [104] also demonstrated protection in rainbow
trout fry using an attenuated strain of F. psychrophilum; this
strain was attenuated using transposon insertion mutagene-

sis. LaFrentz et al. [105] suggested that the glycocalyx of
F. psychrophilum may be an antigen for the development

of a vaccine for protection against CWD and rainbow trout
fry syndrome. Johnson et al. [44] showed that the major his-
tocompatibility gene region MH-IB was linked to survivabil-
ity to CWD in rainbow trout that were IP injection

challenged to F. psychrophilum.

Prevention, control, and treatment

As with all fish diseases, including CWD, management strate-
gies that minimize the risks of pathogen introductions or trans-

mission, and reduce the severity of overt disease outbreaks are
desired alternatives to chemical or antimicrobial treatment
therapies. Prevention of diseases is the most prudent form of

disease control and treatment; this especially pertains to cul-
tured fish populations, and ultimately to wild fish populations
restored or augmented with fishes reared at hatcheries. Proper

fish husbandry will alleviate host stressors that are often in-
volved or suspected in the disease processes, such as factors
that compromise the integrity of the mucus covering the fin
tips [106,107]. Disease preventative techniques include rearing

small (i.e., most susceptible) fish in pathogen-free water, main-
taining safe carrying capacities for the water supply and flow,
the use and proper storage of quality fish food, cleanliness of

the fish holding tanks, minimizing organic material and nitrite
[108], and effective sanitization of equipment used in fish pro-
duction [109]. High numbers of F. psychrophilum cells are shed

into the water column by fish that died from CWD. It was
shown to be very important to quickly remove dead fish from
the population thereby reducing re-infection [38]. Periodic
health and pathogen inspections on statistically significant

numbers of specimens from each fish lot to detect a pathogen
prior to the expression of clinical disease are an essential part
of a disease prevention strategy. If a pathogen is detected early,

the affected fish and therefore, the pathogen can be confined
(i.e., quarantined) within a designated area of a facility and a
containment and treatment strategy begun. Caution should al-

ways be exercised when moving fish between culture facilities,
especially if fish are suspected to be diseased or if the source
facility has a disease history.

Povidone–iodine is commonly used as a fish egg surface dis-
infectant to fertilized and eyed eggs [107]. Although this treat-
ment is not 100% effective to inactivate F. psychrophilum in all
situations, it reduces egg-associated pathogen transmission.

Brown et al. [17] showed that 2% of F. psychrophilum cells sur-
vived an exposure to 100 ppm povidone–iodine for 30 min.
Kumagai et al. [53] treated fertilized rainbow trout, coho

and masu salmon eggs with 50 ppm povidone–iodine for
15 min and subsequently recovered F. psychrophilum from
60% to 80% of the treated eggs; additionally, they treated eyed

coho salmon eggs with up to 1000 ppm povidone-iodine for
15 min or 200 ppm for up to 120 min and both resulting data
sets for treated eggs were comparable to infected, but un-

treated controls. At the 1000 ppm concentration, for example,
8.0 · 104 cfu/g egg were recovered. Results clearly show that
standard egg treatment protocols may not be relied upon to
effectively disinfect salmonid eggs and control the spread of

F. psychrophilum [17,53,110].
In the United States, antimicrobial agents or other drugs to

be used in fish destined for human consumption must be ap-

proved by the U.S. Food and Drug Administration and used
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in accordance with product label information. Certain factors

should be considered when using a therapeutic agent, such as
tissue clearance time, toxicity to fishes in different water chem-
istries, and the organic load in the water. If it is unclear
whether a drug will result in adverse effects to fish in a certain

water chemistry profile, it may be advisable to initially try the
treatment in a pilot study on a small number of individuals to
identify a potential problem, rather than simply treating large

numbers of fish and discovering toxicity with no means to
quickly stop the treatment.

For fish bacterial diseases treated with oral delivery of med-

icated food, early intervention is paramount to achieve a suc-
cessful treatment for CWD. This is especially true since one of
the earliest disease signs is the fish’s loss of appetite, which will

directly affect the efficacy of treatment. A successful antimicro-
bial treatment is dependant on an early and accurate diagnosis
of F. psychrophilum as the causal agent of disease. However,
prophylactic or indiscriminate antimicrobial therapy should

be avoided because of the risk to develop antimicrobial-resis-
tant bacterial strains [59,111,112]. Prior to the use of an anti-
microbial agent, it is desirable to recover the causative

bacterium of the disease, confirm the identification, and per-
form in vitro sensitivity testing to ensure that the particular
bacterial isolate is susceptible to the drug to be used. If the iso-

late is resistant to the antimicrobial agent, then therapy will be
ineffective and perpetuate the resistant isolate at the facility,
and will result in a financial loss for the medicated food.

Two drugs are approved for treatment of CWD in captive-

reared fish in the United States (www.fda.gov/cvm). Both anti-
microbials are delivered to affected fish orally via medicated
feed. Florfenicol (Aquaflor�) may be used for freshwater-

reared salmonids and must be prescribed by a licensed veteri-
narian. Dosage is 10 mg florfenicol per kilogram of fish per
day for 10 consecutive days. The withdrawal time is 15 days.

Oxytetracycline dihydrate (Terramycin�) is similarly permitted
for freshwater-reared salmonids, at 3.75 g per 45.4 kg of fish
per day for 10 consecutive days, and with a 21-day withdrawal

time. Either treatment should be used in conjunction with im-
proved environmental parameters that may reduce stressors to
fish. It is important to maintain clean holding tanks and to
promptly remove dead fish to minimize F. psychrophilum cells

in the water column.
Currently, there are no vaccines commercially available to

protect fish against bacterial CWD. A problem unique to vac-

cination of fish is the need for the vaccine delivery method to
be easily and effectively given to large numbers (e.g., thou-
sands) of fish held in hatchery systems. This is particularly

so for rainbow trout fry syndrome, in that fish will be just be-
yond sac fry stage when vaccinated. Ideally, the delivery meth-
od will be an immersion or waterborne exposure, which is not

only efficient for the fish culturist, but will also be minimally
stressful (e.g., handling) for the fish.

Recent research on vaccine development for F. psychrophi-
lum has been related to specific proteins produced by the bac-

terium. Plant et al. [43] demonstrated high antibody responses
in rainbow trout to heat shock proteins 60 and 70, singularly
or in combination, which were administered (IP) with Freunds

complete adjuvant. Eight weeks post-immunization, the fish
were exposed to 5.0 · 106 or 1.25 · 107 cfu F. psychrophilum
by subcutaneous injections. Mean mortality in the heat shock

protein treatment groups was 74% or greater and significant
protection compared to control groups was not afforded to
the fish. Plant et al. [43] concluded that these proteins did

not seem to be useful for further vaccine development. LaF-
rentz et al. [130] identified and analyzed specific proteins of
F. psychrophilum cultures grown in vivo and in vitro in an
iron-limited medium. Through evaluations using 2-D poly-

acrylamide gel electrophoresis, numerous proteins from the
cultures showed increased intensities, while others showed les-
ser intensities. The expressed (upregulated) proteins may be

important in the course of CWD in fish (LaFrentz et al.
[130] and perhaps warrant utilization in the development of
a fish vaccine.
Disclaimer

Any use of trade, product, or firm names is for descriptive pur-
poses only and does not imply endorsement by the U.S.
Government.
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G, Syvertsen C, et al. Efficacy of injection vaccines against

Flavobacterium psychrophilum in rainbow trout, Oncorhynchus

mykiss (Walbaum). J Fish Dis 2006;29(1):9–20.

[100] Rahman MH, Kuroda A, Dijkstra JM, Kiryu I, Nakanishi T,

Ototake M. The outer membrane fraction of Flavobacterium
psychrophilum induces protective immunity in rainbow trout

and ayu. Fish Shellfish Immunol 2002;12(2):169–79.

[101] Aoki M, Kondo M, Nakatsuka Y, Kawai K, Oshima SI.

Stationary phase culture supernatant containing membrane

vesicles induced immunity to rainbow trout Oncorhynchus

mykiss fry syndrome. Vaccine 2007;25(3):561–9.

[102] Sudheesh PS, LaFrentz BR, Call DR, Siems WF, LaPatra SE,

Wiens GD, et al. Identification of potential vaccine target

antigens by immunoproteomic analysis of a virulent and a non-

virulent strain of the fish pathogen Flavobacterium

psychrophilum. Dis Aquat Organ 2007;74(1):37–47.

[103] LaFrentza BR, LaPatrab SE, Callc DR, Cain KD. Isolation of

rifampicin resistant Flavobacterium psychrophilum strains and

their potential as live attenuated vaccine candidates. Vaccine

2008;26(44):5582–9.
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